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BRIEF ABSTRACT

y

One of the prime difficulties in developing two dimensional dynamic

- elastic plate theories from the three dimensional equations of elasticity is

b

the choice of functional dependence on the thickness coordinate.
This difficulty may be circumvented by formulating the problem first as a

boundary integral equation; then the dependence on the independent variable

through the plate thickness follows form as a direct quadrature with no
assumptions of functional form required.
In particular, the examination of separate symmetric and antisymmetric

modes allows the boundary integral equation to be written with unknowns

evaluated on a single surface. Accession For ,JW
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Consider an infinite elastic plate of thickness h. The dispersion

equation for elastic vibrations of such a plate is well known, e.g. Ewing,

k, Jardetsky and Press (1957). The first step in this research is to duplicate ;
3 such a dispersion equation by means of a boundary integral equation approach.

7 The purpose of this development is not to demonstrate an alternative

derivation procedure (in fact, this approach would appear clumsy compared to

the classical one), but rather to illustrate an approach which may have much

wider application. In particular, the boundary integral equation method

allows solution of the exact, three dimensional equations of linear elasticity,

but on two dimensional surfaces. This accomplishes the primary goal of plate
theory, i.e. the reduction of the dimensionality of the governing equatioms,

without paying the corresponding price of a physical approximation,

Furthermore, if approximations are made based on the physicil property that

the plate thickness is small compared to the wave lengths involved, their

effect can be followed directly in the governing integral equations which ] i

may themselves be solved through an expansion in orders of plate thickness. 1
Define the upper and lower surfaces, at y = +h/2 and ~h/2

respectively, as SU and SL' These shall be taken to be stress free.

The problem may be treated as two dimensional in that waves are taken to

propagate only in one horizontal direction (x) with no dependence on the

second horizontal direction (z normal to x and y). This allows the

introduction of two scalar displacement potentials, ¢ and ¥ , e.g. , i

3 = 6 + Vx(vk)

“x - ¢sx + *9y

uy - ’py - *ox
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These displacement potentials both satisfy wave equations. Assuming

time harmonic dependence exp (~iwt), these equations are then Helmholtz
equations,
V2% + k3o =0

vy + K2y =0

gy

where the dilatational and transverse wave nunbérs, kD and kT’ are
w/YQr + 20)/p. and w/Yulp respectively with Lamé constants A and u.
The stresses are related to the displacement potentials by

Uxx - A[¢,xx + ¢’yy] + 2“[4’9“ + u‘oxy]

oyy = A[¢!xx + ¢!yy] + 2u[¢’yy - Wny]

oxy = u[2¢’xy + w’yy = w’xx]

Boundary conditions for stress free surfaces at constant y require qu

and o to b T
n vy o be zero or

. - 2
brgy = Yoy + K2 V)2

w;xy - 'k% ¢/2 - ¢9xx

i
The governing two dimensional Helmholtz equation may be rewritten as j
an integral (Weber) equation, e.g. Sneddon (1957) by use of Green's theorem z

and a fundamental solution. (Alternative formulations are available which

treat stress directly rather than through a displacement potential, e.g.

Cruse and Rizzo (1968)). For an infinite elastic plate, the Weber equations

|

T ) D |

SO(;) = %Tl ¢(- ] ) (1) (kDR) ( 0)‘ dso | 2:
i an’ D (. o (E, | '

ev(r) = %—fl w[?o)-—"-s—t-(‘-;kﬂ T [krk] ( ) ds_ -




where S represents both the upper and lower surfaces, SU(y = +h/2),
SL(y = =h/2). n is the outward (from the solid) normal to these surfaces,
r is a field point, ;o is an integration variable, R is the distance between
T and ;o and ¢ is (0, 1/2, 1) depending on whether r is exterior to, on the
surface of, or interior to the elastic body respectively. When T is allowed
to approach either surface, these equations reduce the dimensionality of the
problem, i.e. they involve only surface values of the dependent variables.
The variation of these variables through the thickness of the plate is
prescribed by using the same equations with the field point interior to the
plate; here, however, once the surface values have been obtained by their owm
system of equations, the interior values are found through a direct
quadrature.

| Two basic forms of motion are possible; the symmetric form im which
¢y = *4ps ¥y = =¥, and the antisymmetric form in which ¢, = éoL and ¥, = +o
where U, L refer to upper and lower surfaces respectively. A periodic
dependence on x in the form exp. (ixx) will be agsumed; this form could also
be obtained through the integral equations.

Consider the field point to lie on the upper surface. By symmetry,
only ¢ and § values on this surface are required for the complete problem.
Define

¢(x,0h/2) = ¢, (x) = 24, (x) = A exp (ixx)

v(x,h/2) = wu(x) = ;wL(x) = B exp (ixx)

a¢U(x) 3¢L
3y =3 3y (x) = C exp (ikx)

oy, W
F b/ =5 @ =5t ) =D e (k0)

3
;} (x,h/2) =

* 3y




where the two signs refer to symmetric and antisymmetric modes respectively,
and the two subscripts U and L refer to uppper and lower surfaces
respectively.

The equation then becomes

crm = oo [ [0pn)5E (s
+ (1/4) [ [ﬂlgl) lkDKL]aog}ExO)
3 ¢u[x°) [ av [kDRL]]]y - h/2 -y

with a similar equation on ¢ with k‘l‘ replacing kD and ithe signs on the lower

surface integral reversed. Here R, = 'x - xol = (g, B = [[x - x )2 + hZ] 1/2
and £ = x, = X3 where aRU / ay vanishes on the upper surface..

The boundary conditions provide

C= ixB - {1 k%/ZK)B
D = -ixA + [1 k%/ZK)A

Then

(/DA exp (1kx) = (1/41)[0[4 e (txx )8y D [knku)]d %o

A A .h/2
7(1/61) f: i -A[th/RL)H{D (kD&L} +C ’nf,n (kDRL} em(:;:o}d %,
. y= - -yo

and

(1/2)B exp(ixx) = u/u)jl D exp (ixx,]H, ‘) (krRo) |2 =

y- y°- h/2

ranof oo/ ] + 0 17 (] ofim e

y= hlznoyo
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These can be shifted to £

left hand side of the equationm.

= 2} cos(KE)Hgl)(KC)dE

(]

k2 - «2)"V2;  0<x <k
= 2
_i(KZ - k2)"l/2; k<K <®

J’ exp(iKE)Hél)(k[g2 + h2]1/2)dE

- zf cos(KE)Hgl)(k[EZ + h21Y/2)qe

o

{+ (k2 - k2)=1/2 exp[ih(k2 - k2)1/2]; 0 <k <k
-2

-1(k2 - k2)~1/2 exp[-h(x2 - k2)1/2]; K<k <o

[“ (-kh)exp(ixe)ﬂil)(k[gZ + h2]12) (g2 + n2)"1/2 g

- Zr(-kh)cos(na)nfl)(k[e2 + h2)1/2)e (g2 + n2)~1/2 g¢
o]

{+1 exp [1h(k? - ¥2)1/2); 0 <k <k
=2

+1i exp [-h(ac2 - kz)l/Z]; k<K <w

X
o

be evaluated using the Bateman tables, Erdelyi, et al. (1954), e.g.:

[ expcacern{® leac

- x, thus removing the x dependence from the

These are clearly Fourier Transforms and may
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There are four homogeneous equations on the four unknopn

coefficients which then must define a dispersion relationship.

(5 - <)% aene] [0 - <)
-1k - kg)-1/2 sexp[-he? - k%)l/l]
]-1/2 exp[ih[kg - Kz)uz] 0<«k< 5

-1[,<2 - kg]-l/z exp -h[.<2 - klz))x/z] ; ky <k <=

(1/2)A = (1/41)|-2C

[z_,cz

7 Ce20

() [

12 - )z B e Zhfe? - 12)1/7]
[k% _rxz)-llz exp[?h[k% - K2]1/2.]  0<k< Ky

-1[.:2 - k%)-l/Z exp ’h[xz - k%)llz]' ’_ | ky < K<

(1/2)B = (1/41)(-2D

+ 2+D-

C= [:hc - 1k.f./2.< B

D--—Eh: - 1&%/2:: A

Since kD < kT, there are three distinct regions of solution:

I : 0<kc«< kD < kT
II:0'<kD<;<<kT
III:O<kD<kT<.<

in addition to the two basic modes (symmetric and antisymmetric). Only case

S L

. (111) will be considered since only long waves are anticipated. Consider the
case (III1) - symmetric: the governing equations lead directly to the well-
known dispersion equation, for general elastic, e.g. Ewing, Jardetsky and

Press 6-12 (1957), with v2 = k2 - k2 and w2 =kt K2,
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tanh [hv'/2] AN k2
tanh [hv/2] (2 + v'2)2

For h very small, this reduces to
1.[1 - kg/k%) [Kz/k%) -1

which is the well-known elastic plate dispersion equation, e.g. Ewing,
Jardetsky and Press, 6-16, (1957).

Case 1II - antisymmetric follows in much the same way, resulting in the

dispersion equation

tanh [hv/2] _ _ 4wv' «2
tanh [hv'/2] (k2 + v'2)2

as found as equation 6-11 in Ewing, Jardetsky and Press (1957).
Interior values of ¢ and ¢ can be found once the surface values are

known (at least to within a constant multiplier). Placing the field point at

(x,y) where -h/2 < y < +h/2 yields

$(x,y) = (1/41) r ["u (1) (%)

- 5 [y o )axo
y, = h/2
A fefegy 260 o) = 5 el =

Yo = ‘=h/2

and a similar equation on Y. Using slight modifications of the previous

Fourier transforms leads directly to interior values, e.g. the symmetric

solution for ¢ for case III is




#(x,y) = —exp(irx) ° exp[-h[gz - kg)x/z 2]
, - - e /[ kg)x/z] {:;3[ kg},/zl

which again agrees with equation 6-13 of Ewing, Jardetsky and Press.
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In particular, the examination of separate symmetric and antisymmetric modes
allows the boundary integral equation to be written with unknowns evaluated
on a single surface.







